0 i9 D6 p1 C7 G假定参比样F400的孔分布是最合理的,则表5中各试样的“Vi/V基准样”及“Si/S基准样”两个比率结果相当时,表示该试样在直径3~50nm孔分布区域内,孔隙分布的特征与F400相当,由此可见,自制试样中只有YK-4与F400相当,且此孔分布区内YK-4的孔隙远较F400发达; [$ t, y- d: C5 w6 r
当上述两个比率结果相差较大时,可得到两点孔分布方面的信息:一是试样在目标区域内孔隙的发达程度;二是孔隙的集中趋势(与F400相比时的相对趋势)。 / X* K2 p" A1 v( y5 V6 H9 {/ X( ~/ q! e与F400相比,M008的直径3~50nm区域的孔隙更发达一些,但其孔径相对集中于粗的过渡孔区域(其孔容比F400大,但表面积比F400小,说明与F400相比,粗孔更多一些); ! n4 s9 V, C, v6 [) [3 U而自制试样YK-1在直径3~50nm区域的孔隙不如F400发达,且它的孔径更多地相对集中于细的过渡孔区域(其孔容比F400小但表面积比F400大许多); - @# i3 ~2 V1 Z" ^3 y7 `- tYK-2和YK-3的区域孔隙不如F400发达,且同样更集中于细孔区(与F400相比,孔容比率<1,表面积比率亦<1,但后者比前者数值大,说明孔径更集中于细孔区)。 : _5 h2 T h0 |7 m同法比较可知,在直径50~400nm过渡孔区,M008及YK-4的孔隙率比F400发达,且孔分布特征与F400相当;YK-2和YK-3的孔隙率比F400高,但孔隙更多地分布于粗孔区;YK-1的孔隙率与F400相当,但几乎全部集中于粗孔区。 9 Q9 e) H# O E" s1 y y. f另外,试样M008和YK-4的直径400nm以上的孔隙要比F400多,而其它三个试样本区域内的孔隙则比F400少许多。 I, Z, _& T- y y4 l7 h' E
2.2.2.3 根据DFT分析结果可得到以下结论:# T0 S/ |" p. h6 Z' Y9 Y8 b; T
Calgon F400压块活性炭是一种微孔(含细微孔和粗微孔)发达,同时含部分直径3~50nm和50~400nm过渡孔,且含一定量>400nm大孔的炭品种,从表面积角度看,其DFT法总表面积为818.13m2/g,细微孔占76.43%,粗微孔占19.13%,过渡孔占1.34%,大孔占3.10%。: {" i! N$ ?8 d' c
Mitsui 008压块活性炭的DFT总表面积为825.37m2/g,细微孔占67.35%,粗微孔占28.24%,过渡孔占1.12%,大孔占3.29%。除大孔和粗微孔比F400发达外,其他孔隙区的孔隙发达率略逊于F400。 5 ]* k# I! N8 h# z4 S8 G: n% A自制样YK-4的DFT总表面积为882.0m2/g,细微孔占70.75%,粗微孔占21.70%,过渡孔占2.74%,大孔占4.81%。除细微孔外,其他区域孔隙均比F400发达,是唯一一种有希望替代F400活性炭的自制样品。 ( T5 X% {+ n8 |9 H! @3 w" [而YK-1、YK-2、YK-3则更多地显示其是一系列粗微孔和细中孔发达的炭样,与F400的孔结构相差甚远,应寻求其他的应用途径。 6 M3 y' [' q1 R! K9 `+ s& {3、结论" ]3 `! G; E; ~$ i0 a& }
3.1 测试结果表明,Calgon F400压块活性炭的DFT微孔占95.56%,过渡孔1.34%,大孔3.10%(按表面积计算);或微孔占88.71%,过渡孔11.29%(按孔容积计算)。说明F400是一种含一定量大中孔隙的微孔发达型煤质活性炭。4 h) D% @: v) X" F( ?+ K+ ]
3.2 参比样Mitsui 008压块活性炭的孔结构特征与F400相近,其常规吸附性能已达到或超过F400的水平。) ?0 G1 t: I5 H9 R4 Y
3.3 自制试样中,只有YK-4压块炭样的孔结构特征与F400相当,且常规性能全面超过了F400的水平,是唯一有可能替代F400的自制试样。 2 U4 y$ @( o& Q3.4 自制样YK-1、YK-2、YK-3的大部分常规性能项目虽与F400接近,担从孔结构特性角度分析后表明,它们的孔分布情况与F400差异较大,更多地显示其是一系列粗微孔和细中孔较发达的压块活性炭,应寻求其他的应用途径。 - p& K) T' a8 B# c! |3.5 选用神府长焰煤为主,配以适当的主焦煤,用高温煤沥青做粘合剂,采用压块成型工艺,经适度氧化后再炭化,活化,可以制成各项性能达到甚至超过Calgon F400商用炭水平的煤质活性炭,证明全部采用国产原材料,走中国特色的制造工艺路线,完全能够制造出与世界一流水平的F400商品炭相媲美的国产水处理煤质压块活性炭产品。 # z6 w5 E) ^5 f1 Y& f8 s3 Q( y$ t @/ v& c
Trial-production of Granular Coal-based 5 K* _ y3 L+ Z. WActivated Carbon Using Agglomerated Method - U7 B4 s" j7 ?Abstract $ ]8 U9 m' w+ g
A series of agglomerated activated carbon (AC) samples were made in the laboratory from 6 raw coals and a hard coal-based pitch. The normal adsorption properties and pore structure were analyzed and their comparisons were made with that of Calgon F400(from USA) and Mitsui 008 (from Japan) .The results show that all properties (especially the pore structure) of YK-4 AC which is made from Shenfu coal, Shanxi main coking coal plus the hard coal-based asphalt, can meet the standard of commercial Calgon F400 AC.! Z6 m: {% c- y9 r# Y. d' P
Key word 7 n" @. R: _( k8 e# U; A& Z# R0 o agglomerated activated carbon, pore structure, pore volume, pore surface area, mesopore & x( W# }+ |: }1 P' q